训练流程

  1. 环境设置

    • 训练在Google Colab上完成,利用其免费提供的16G显存(实际可用约13~15G)。
  2. 数据预处理

    • 使用BPE(Byte Pair Encoding)算法处理词表,词表大小约为5万。
    • 对每篇文章mask最后一个字用作预测,并计算loss。
  3. 数据集定义

    • 定义了MyDataSet类,用于处理数据集,包括数据的获取、解码输入和输出的生成,以及数据的填充。
  4. 注意力机制

    • 实现了get_attn_pad_maskget_attn_subsequence_mask函数,用于在注意力计算中忽略padding和序列顺序。
    • 定义了ScaledDotProductAttentionMultiHeadAttention类,用于计算Q和K的相似度矩阵,并应用多头注意力机制。
  5. 前馈网络

    • 实现了PoswiseFeedForwardNet类,用于在解码器层中进行前馈网络计算。
  6. 解码器层和解码器

    • 定义了DecoderLayerDecoder类,用于构建解码器层和整个解码器。
  7. GPT模型

    • 定义了GPT类,包含解码器和投影层,用于将解码器的输出映射到词汇表大小。
  8. 模型训练

    • 设置了批处理大小、训练轮数和学习率。
    • 实现了train_step函数,用于执行单个epoch的训练。
    • 实现了train函数,用于执行整个训练过程,并在每个epoch后保存模型权重。
  9. 模型生成

    • GPT类中的generate方法用于生成新的文本序列。
  10. 训练辅助函数

    • 提供了epoch_timeprint_num_parameterssplit_arrayget_dataset_from_mkget_dataset_from_json等辅助函数,用于训练过程中的时间计算、参数统计、数据分割和数据集加载。
  11. 训练执行

    • 在主函数中,初始化数据集、数据加载器、模型,并执行训练过程。
  12. 模型调优和推理

    • 文章最后提到,尽管代码已经跑通,但效果尚未调优。作者认为可能需要在通用语言文本上进行预训练,然后再在垂直领域数据上进行微调,以提高模型在家用CPU上的推理能力。

整个流程涵盖了从数据预处理到模型训练、保存和生成文本的完整步骤,是一个典型的自然语言处理模型训练流程。

b4e61ad8592f4a299e1e3afeedd88b13 (1).png

代码部分

# -*- coding: utf-8 -*-
"""gpt-tiny.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1zSuS4zBqsIh7BqBv9eA8CZYcdR0RO6Lw
"""

!nvidia-smi

!ls -lh /content/
!mkdir model

"""## 制作词表"""

# 1. 遍历文件夹,制作词表

data_list = ["<pad>", "<unk>", "<sep>", "<cls>"]
data_set = set(data_list)

import glob

import json

with open("data.json") as f:
    data = json.load(f)
    for lines in data:
        for word in lines:
            if word not in data_set:
                data_set.add(word)
                data_list.append(word)

print("vocab_size", len(data_set))
import json

with open("vec.json", 'w') as f:
    json.dump(data_list, f, ensure_ascii=False)

"""## 超参数配置"""

import json

import torch

max_pos = 1024  # 一段话最多字
d_model = 768  # Embedding Size
d_ff = 2048  # FeedForward dimension
d_k = d_v = 64  # dimension of K(=Q), V
n_layers = 6  # number of Encoder of Decoder Layer
n_heads = 8  # number of heads in Multi-Head Attention

device = "cuda" if torch.cuda.is_available() else "cpu"
vocab_data = {}
f = json.load(open("vec.json"))
for i, v in enumerate(f):
    vocab_data[v] = i
vocab_data_reverse = {}
for k, v in vocab_data.items():
    vocab_data_reverse[v] = k
vocab_size = len(f)  # 词典大小

special_char_pad = 0
special_char_sep = 2


def encoder(text):
    ret = []
    for x in text:
        ret.append(vocab_data[x])
    return ret


def decoder(encoder_list):
    ret = ""
    for x in encoder_list:
        ret += vocab_data_reverse[x]
    return ret

"""## 模型层

"""

# 构建数据集和模型
import random

import numpy as np
import torch
import torch.utils.data as Data
from torch import nn
import torch.nn.functional as F

CLIP = 1


# 定义数据集
class MyDataSet(Data.Dataset):
    def __init__(self, datas):
        self.datas = datas

    def __getitem__(self, item):
        data_item = self.datas[item]
        decoder_input = data_item[:-1]
        decoder_output = data_item[1:]
        return {"decoder_input": decoder_input,
                "decoder_output": decoder_output}

    def padding_batch(self, batch):  #
        for d in batch:  # 对当前batch的每一个decoder_input和decoder_output数据填充"<pad>",填充到和batch里面的有的最大长度为止
            input_len = len(d["decoder_input"])
            output_len = len(d["decoder_output"])
            d["decoder_input"].extend([special_char_pad] * (max_pos - input_len))
            d["decoder_output"].extend([special_char_pad] * (max_pos - output_len))
        decoder_inputs = torch.tensor([d["decoder_input"] for d in batch], dtype=torch.long)  # 转type
        decoder_outputs = torch.tensor([d["decoder_output"] for d in batch], dtype=torch.long)

        return decoder_inputs, decoder_outputs  # 形状[b,decoder_input_maxlen], [b,decoder_output_maxlen]  type为torch.long

    def __len__(self):
        return len(self.datas)


"""
======================================================================================================================================================================
下面是模型构建

"""


# 把数据里面<pad>对应的字符给mask掉,让后面Q和K相似度矩阵的softmax中这些pad都为0,就不会被后续的V考虑
def get_attn_pad_mask(seq_q, seq_k):  # 形状都是[b, tgt_len <300]

    batch_size, len_q = seq_q.size()  # len_q = len_k = tgt_len
    batch_size, len_k = seq_k.size()
    # eq(zero) is PAD token.就是把数据里面<pad>对应的字符给mask掉,让后面Q和K的softmax不考虑这些<pad>
    pad_attn_mask = seq_k.data.eq(0).unsqueeze(
        1)  # [b, 1, tgt_len], id为0(也就是<pad>的id)的位置为True,其他位置为False。后面会把Ture位置的mask掉
    return pad_attn_mask.expand(batch_size, len_q, len_k)  # [b, tgt_len, tgt_len]


def get_attn_subsequence_mask(seq):  # seq: [b, tgt_len]

    attn_shape = [seq.size(0), seq.size(1), seq.size(1)]  # [b, tgt_len, tgt_len]
    subsequence_mask = np.triu(np.ones(attn_shape), k=1)  # Upper triangular matrix(上三角矩阵)
    subsequence_mask = torch.from_numpy(subsequence_mask).byte()
    subsequence_mask = subsequence_mask.to(device)
    return subsequence_mask  # [b, tgt_len, tgt_len] 上三角矩阵,下0上1,dtype=torch.uint8


class ScaledDotProductAttention(nn.Module):  # 计算Q和K的相似度矩阵,然后乘V。对应笔记里的图
    def __init__(self):
        super(ScaledDotProductAttention, self).__init__()

    def forward(self, Q, K, V,
                attn_mask):  # 前三者形状相同[b, n_heads, tgt_len, d_k=64],attn_mask:[b, n_heads, tgt_len, tgt_len]

        scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)  # Q和K的相似度矩阵scores : [b, n_heads, tgt_len, tgt_len]
        scores.masked_fill_(attn_mask, -1e9)  # Fills elements of self tensor with value where mask is True.
        # 就是scores矩阵里面和attn_mask=1对应位置的元素全部替换成-1e9,使其在下一步的softmax中变为0

        attn = nn.Softmax(dim=-1)(scores)  # [b, n_heads, tgt_len, tgt_len]
        context = torch.matmul(attn, V)  # [b, n_heads, tgt_len, d_v]
        return context, attn


class MultiHeadAttention(nn.Module):  # 多头注意力机制
    def __init__(self):
        super(MultiHeadAttention, self).__init__()
        self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False)  # d_model=768 ,  d_v = d_k = 64 ,  n_heads=8
        self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False)
        self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)
        self.fc = nn.Linear(n_heads * d_v, d_model, bias=False)
        self.layernorm = nn.LayerNorm(d_model)

    def forward(self, input_Q, input_K, input_V,
                attn_mask):  # 前三者形状相同,都是[b, tgt_len, d_model]  , attn_mask: [b, tgt_len, tgt_len]

        residual, batch_size = input_Q, input_Q.size(0)  #
        # [b, tgt_len, d_model] --> [b, tgt_len, d_k * n_heads] -split-> (b, tgt_len, n_heads, d_k) -trans-> (b, n_heads, tgt_len, d_k)
        Q = self.W_Q(input_Q).view(batch_size, -1, n_heads, d_k).transpose(1, 2)  # Q: [b, n_heads, tgt_len, d_k=64]
        K = self.W_K(input_K).view(batch_size, -1, n_heads, d_k).transpose(1, 2)  # K: [b, n_heads, tgt_len, d_k=64]
        V = self.W_V(input_V).view(batch_size, -1, n_heads, d_v).transpose(1, 2)  # V: [b, n_heads, tgt_len, d_v=64]

        attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1,
                                                  1)  # 添加n_heads维度并复制。attn_mask : [b, n_heads, tgt_len, tgt_len]

        context, attn = ScaledDotProductAttention()(Q, K, V, attn_mask)  # 参考图解,context形状[b, n_heads, tgt_len, d_v]
        context = context.transpose(1, 2).reshape(batch_size, -1, n_heads * d_v)  # context: [b, tgt_len, n_heads * d_v]
        output = self.fc(context)  # [batch_size, tgt_len, d_model]
        return self.layernorm(output + residual), attn


class PoswiseFeedForwardNet(nn.Module):  # [b,tgt_len,d_model] -> [b,tgt_len,d_model]     输入和输出形状不变
    def __init__(self):
        super(PoswiseFeedForwardNet, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(d_model, d_ff, bias=False),
            nn.ReLU(),
            nn.Linear(d_ff, d_model, bias=False)
        )
        self.layernorm = nn.LayerNorm(d_model)

    def forward(self, inputs):
        '''
        inputs: [batch_size, seq_len, d_model]
        '''
        residual = inputs
        output = self.fc(inputs)
        return self.layernorm(output + residual)  # [batch_size, seq_len, d_model]


class DecoderLayer(nn.Module):
    def __init__(self):
        super(DecoderLayer, self).__init__()
        self.dec_self_attn = MultiHeadAttention()  # 多头注意力
        # self.dec_enc_attn = MultiHeadAttention()
        self.pos_ffn = PoswiseFeedForwardNet()

    def forward(self, dec_inputs,
                dec_self_attn_mask):  # dec_inputs: [b, tgt_len, d_model]    dec_self_attn_mask: [b, tgt_len, tgt_len]

        # dec_outputs: [b, tgt_len, d_model], dec_self_attn: [b, n_heads, tgt_len, tgt_len]
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)

        dec_outputs = self.pos_ffn(dec_outputs)  # [b, tgt_len, d_model]
        return dec_outputs, dec_self_attn  # [b, tgt_len, d_model] , [b, n_heads, tgt_len, tgt_len]


class Decoder(nn.Module):
    def __init__(self):
        super(Decoder, self).__init__()
        self.tgt_emb = nn.Embedding(vocab_size,
                                    d_model)  # 以矩阵形式抽取一行,会比直接用mlp高效。因为mlp会多很多无用运算      emb矩阵形状(vocab_size,768)
        self.pos_emb = nn.Embedding(max_pos, d_model)  # 可学习的位置编码    emb矩阵形状(300,768)
        self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])

    def forward(self, dec_inputs):  # 输入dec_inputs形状[b,tgt_len]

        seq_len = dec_inputs.size(1)  # tgt_len ,表示batch内最大长度,不会超过300
        pos = torch.arange(seq_len, dtype=torch.long, device=device)  # 给位编码准备的值,[0,1,2,3,...,seq_len-1]
        pos = pos.unsqueeze(0).expand_as(dec_inputs)  # [tgt_len] -> [b, tgt_len]

        dec_outputs = self.tgt_emb(dec_inputs) + self.pos_emb(pos)  # [b, tgt_len, d_model=768]

        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)  # [b, tgt_len, tgt_len]  把<pad>给mask掉
        dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs)  # [b, tgt_len, tgt_len] 上三角矩阵
        dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequence_mask),
                                      0)  # [b, tgt_len, tgt_len] 矩阵大于0的全为1,否则为0

        dec_self_attns = []
        for layer in self.layers:
            # dec_outputs: [b, tgt_len, d_model], dec_self_attn: [b, n_heads, tgt_len, tgt_len], dec_enc_attn: [b, h_heads, tgt_len, src_len]
            dec_outputs, dec_self_attn = layer(dec_outputs, dec_self_attn_mask)
            dec_self_attns.append(dec_self_attn)
        return dec_outputs, dec_self_attns


class GPT(nn.Module):
    def __init__(self):
        super(GPT, self).__init__()
        self.decoder = Decoder()
        self.projection = nn.Linear(d_model, vocab_size)  # 768->vocab_size,也就是把最后的隐藏层节点768投影到字典个数的节点上

    def forward(self, dec_inputs):  # 输入dec_inputs形状[b,tgt_len]         tgt_len<=300 (tgt_len是batch内最大长度)
        dec_outputs, dec_self_attns = self.decoder(
            dec_inputs)  # dec_outpus: [b, tgt_len, d_model=768], dec_self_attns: [n_layers, b, n_heads, tgt_len, tgt_len]
        dec_logits = self.projection(dec_outputs)  # dec_logits: [b, tgt_len, vocab_size]
        return dec_logits.view(-1, dec_logits.size(-1)), dec_self_attns  # 左边那个输出形状[b *tgt_len,vocab_size]

    @torch.no_grad()
    def generate(self, sentence, max_new_tokens, temperature=1.0, top_k=None):
        """
        Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        """
        idx = torch.tensor(encoder(sentence), dtype=torch.long, device=device).unsqueeze(
            0)  # [n] -> [1,n]  转type,并放入指定设备

        for _ in range(max_new_tokens):
            # forward the model to get the logits for the index in the sequence
            dec_outputs, _ = self.decoder(idx)
            logits = self.projection(dec_outputs)  # [1, tgt_len, vocab_size]
            # pluck the logits at the final step and scale by desired temperature
            logits = logits[:, -1, :] / temperature
            # optionally crop the logits to only the top k options
            if top_k is not None:
                vv, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < vv[:, [-1]]] = -float('Inf')
            # apply softmax to convert logits to (normalized) probabilities
            probs = F.softmax(logits, dim=-1)
            # sample from the distribution
            # idx_next = torch.multinomial(probs, num_samples=1)
            idx_next = torch.max(probs, dim=-1, keepdim=True)[1]
            # append sampled index to the running sequence and continue
            if idx_next.item() == special_char_sep:
                break
            idx = torch.cat(
                [idx.detach(), idx_next], -1)
            yield vocab_data_reverse[idx_next.item()]

"""

## 训练"""

# 模型的训练
import glob
import math
import time

from torch import optim
from tqdm import tqdm


def epoch_time(start_time, end_time):  # 把秒数表示为分钟和秒
    elapsed_time = end_time - start_time
    elapsed_mins = int(elapsed_time / 60)
    elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
    return elapsed_mins, elapsed_secs


def train_step(model, data_loader, optimizer, criterion, clip=1, print_every=None):  # 每一个eopch的训练
    model.train()  # 训练模式

    if print_every == 0:
        print_every = 1

    print_loss_total = 0  # 每次打印都重置,统计一定batch数内(默认10)的loss,每10个batch打印一次

    epoch_loss = 0  # epoch的总loss

    for i, (dec_inputs, dec_outputs) in enumerate(
            tqdm(data_loader)):  # dec_inputs: [b, tgt_len] , dec_outputs: [b, tgt_len]
        optimizer.zero_grad()
        dec_inputs, dec_outputs = dec_inputs.to(device), dec_outputs.to(device)
        # outputs: [batch_size * tgt_len, tgt_vocab_size]       tgt_len<=30

        # with torch.cuda.amp.autocast(): # 半精度训练
        outputs, dec_self_attns = model(dec_inputs)
        loss = criterion(outputs, dec_outputs.view(
            -1))  # outputs :(b * tgt_len, vocab_size),dec_outputs.view(-1) :(b * tgt_len)       tgt_len<=300

        print_loss_total += loss.item()
        epoch_loss += loss.item()
        loss.backward()  # 梯度反向传播

        # 梯度裁剪,防止梯度爆炸。如果loss超过clip,将梯度值缩小为原来的(loss/clip)分之一
        torch.nn.utils.clip_grad_norm_(model.parameters(), clip)

        optimizer.step()  # 更新模型权重

        if print_every and (i + 1) % print_every == 0:
            print_loss_avg = print_loss_total / print_every
            print_loss_total = 0
            print('\tCurrent Loss: %.4f' % print_loss_avg)

    return epoch_loss / len(data_loader)


def train(model, data_loader, lr):
    criterion = nn.CrossEntropyLoss(ignore_index=0).to(device)  # 损失函数
    optimizer = optim.AdamW(model.parameters(), lr=lr)  # 优化器

    for epoch in range(epochs):
        start_time = time.time()
        train_loss = train_step(model, data_loader, optimizer, criterion, CLIP, print_every=100)  # 训练一个epoch
        end_time = time.time()
        torch.save(model.state_dict(), r'model/GPT-%d.pt' % epoch)  # 保存模型权重

        epoch_mins, epoch_secs = epoch_time(start_time, end_time)  # 把秒数表示为分钟和秒
        print(f'Epoch: {epoch + 1:02} | Time: {epoch_mins}m {epoch_secs}s')
        print(f'\tTrain Loss: {train_loss:.3f}')


def print_num_parameters(model):
    # Find total parameters and trainable parameters
    total_params = sum(p.numel() for p in model.parameters())

    print("number of parameters: %.2fM" % (total_params / 1e6,))

    total_trainable_params = sum(
        p.numel() for p in model.parameters() if p.requires_grad)
    print("train of parameters: %.2fM" % (total_trainable_params / 1e6))


def split_array(array, num):
    length = len(array)
    chunk_size = math.ceil(length / num)
    result = []
    for i in range(0, chunk_size):
        result.append(array[:num])
        array = array[num:]
    return result


def get_dataset_from_mk(folder):
    dataset = []
    for filename in glob.glob(folder + "*.md"):
        with open(filename) as f:
            data = f.read()
        array_ = split_array(encoder(data), max_pos)
        dataset.extend(array_)
    return dataset


def get_dataset_from_json(filename):
    with open(filename) as f:
        data = json.load(f)
    dataset = []
    for item in data:
        dataset.append(encoder(item))
    return dataset


if __name__ == '__main__':
    batch_size = 16
    epochs = 10
    shuffle = True
    lr = 1e-4

    filename = "data.json"
    dataset = get_dataset_from_json(filename)

    data_set = MyDataSet(dataset)
    data_loader = Data.DataLoader(data_set,
                                  batch_size=batch_size,
                                  collate_fn=data_set.padding_batch,
                                  shuffle=shuffle)  # 对每个batch单独调用collate_fn处理,因为batch内的句子长短不一,不能直接用torch的默认方法

    model = GPT().to(device)
    print_num_parameters(model)
    train(model, data_loader, lr)

"""## **测试推理**"""

import torch

model = GPT().to(device)
model.load_state_dict(torch.load('model/GPT-3.pt', map_location=device))
model.eval()  # 推理模式
context = "java反序列"

for chunk in model.generate(context, 500, 0.8,1):
    print(chunk, end="")

参考来源:https://w8ay.fun/%E7%AC%94%E8%AE%B0/%F0%9F%A4%96%20AI%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD/%E4%BB%8E0%E5%AE%9E%E7%8E%B0%E7%BD%91%E7%BB%9C%E5%AE%89%E5%85%A8%E2%80%9C%E5%B0%8F%E2%80%9D%E6%A8%A1%E5%9E%8B.html#%E6%80%BB%E7%BB%93

发表评论